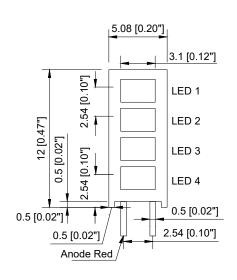
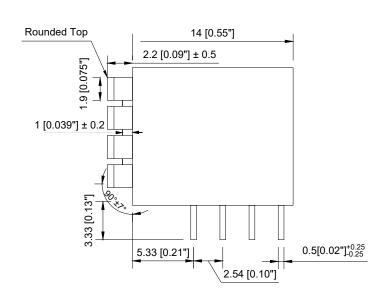


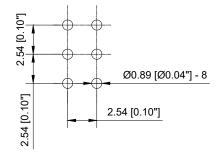
PRODUCT SPECIFICATION

Part Number PL105-4RG1213


Details


- 2 x 3mm Quad-Level CBI LED
- Bi-Color Red/Green Emitting
- Housing material Nylon 66 UL94V-0
- White Diffused lens

Features


- RoHS Compliant
- Space saving Circuit Board Indicator
- Rugged and Durable

Mechanical Dimensions

Recommended PCB Layout

Notes:

- 1. All dimensions are in millimeters unless otherwise noted
- 2. Tolerance is ±0.25mm unless otherwise noted
- 3. Specifications subject to change without notice

Device Selection Guide

Dout Number	Housing	Chi	I ED I and Tame	
Part Number	Material	Material	Emitting Color	LED Lens Type
DI 105 4DC1212	Nylon 66	GaAsP/GaP	Orange-Red	White Different
PL105-4RG1213	UL94-0	GaP/GaP	Green	White Diffused

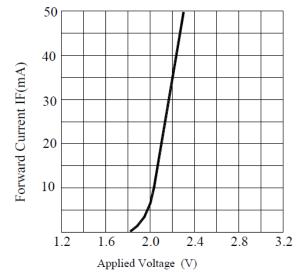
LED Absolute Maximum Ratings at Ta=25 ℃

Parameter	Symbol	Rating		Unit
Power Dissipation	PD	Red	78	mW
Fower Dissipation	ΓD	Green	78	111 VV
Reverse Voltage	VR	5		V
DC Forward Current	IF	30		mA
Reverse (Leakage) Current	Ir	100		μΑ
Peak Current (duty cycle 1/10, 1KHz)	Ipf	100		mA
Operating Temperature	Topr	-25~+85		°C
Storage Temperature	Tstg	-40~+100		°C
Soldering Temperature (1.6mm from body)	Tsol.	Dip Soldering : 260°C for 5 sec. Hand Soldering : 350°C for 3 sec.		

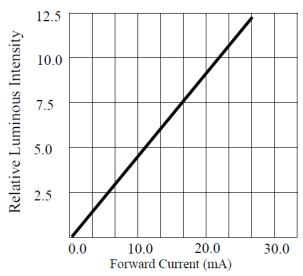
LED Electrical and Optical Characteristics at Ta=25 $^{\circ}$ C

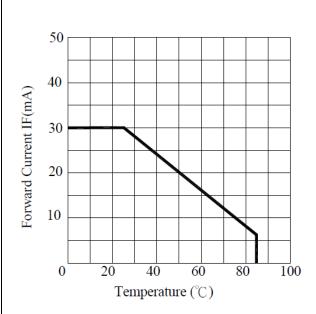
Parameter	Symbol	Color	Min.	Тур.	Max.	Unit	Condition	
Lyminaus Intensity	Τ	Red	3.0	9.0		mad		
Luminous Intensity	Iv	Green	3.0	9.0		mcd	IF=20mA	
Formand Voltage	VIE	Red		2.1	2.3	V		
Forward Voltage	Vf	Green	1	2.1	2.6			
Dools Wayalangth	1.5	Red	1	642			IF=20IIIA	
Peak Wavelength	λр	Green	1	567		nm		
Dominant Wavalangth	λd	Red	1	629				
Dominant Wavelength		Green	1	572				
Reverse (Leakage) Current	Ir		1		50	μΑ	Vr=5V	
Viewing Angle	201/2		1	120		-	deg	
Speatrum Line Helfwidth	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Spectrum Line Halfwidth		Green		30		11111	IF-20IIIA	

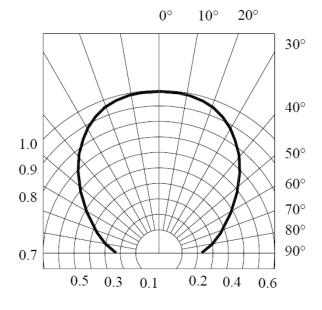
Notes: 1. Tolerance of Luminous Intensity is $\pm 15\%$


^{2.} Tolerance of Forward Voltage is $\pm 0.1 \text{V}$

^{3.} Tolerance of Dominant Wavelength is ± 1 nm


^{4.} Customer's special requirements are welcome.


LED Typical Electrical / Optical Characteristic Curves


FORWARD CURRENT VS.APPLIED VOLTAGE

FORWARD CURRENT VS. LUMINOUS INTENSITY

FORWARD CURRENT VS. AMBIENT TEMPERATURE

RADIATION DIAGRAM

LED Precautions for Use

1. Temperature in use

Since the light generated inside the LED needs to be emitted to outside efficiently, a resin with high light transparency is used; therefore, additives to improve the heat resistance or moisture resistance (silica gel, etc) which are used for semiconductor products such as transistors cannot be added to the resin.

Consequently, the heat resistant ability of the resin used for LED is usually low; therefore, please be careful on the following during use.

Avoid applying external force, stress, and excessive vibration to the resins and terminals at high temperature. The glass transition temperature of epoxy resin used for the LED is approximately $120-130^{\circ}$ C.

At a temperature exceeding this limit, the coefficient of liner expansion of the resin doubles or more compared to that at normal temperature and the resin is softened.

If external force or stress is applied at that time, it may cause a wire rupture.

2. Soldering

Please be careful on the following at soldering.

After soldering, avoided applying external force, stress, and excessive vibration until the products go to cooling process (normal temperature), <Same for products with terminal leads>

(1) Soldering measurements:

Distance between melted solder side to bottom of resin shall be 1.6mm or longer.

(2) Dip soldering:

Pre-heat: 90°C max. (Backside of PCB), Within 60 seconds.

Solder bath: 260±5°C (Solder temperature), Within 5 seconds.

(3) Hand soldering: 350°C max. (Temperature of soldering iron tip), Within 3 seconds.

3. Insertion

Pitch of the LED leads and pitch of mounting holes need to be same.

4 Others

Since the heat resistant ability of the LED resin is low, SMD components are used on the same PCB, please mount the LED after adhesive baking process for SMD components. In case adhesive baking is done after LED lamp insertion due to a production process reason, make sure not to apply external force, stress, and excessive vibration to the LED and follow the conditions below.

Baking temperature: 120°C max. Baking time: Within 60 seconds.

If soldering is done sequentially after the adhesive baking, please perform the soldering after cooling down the LED to normal temperature.

	Approved By	Checked By	Prepared By
PL105-4RG1213 Customer Approval Signatures			

	Record Of Revisions				
Rev.	Comments	Page	Date		
0	Released Spec		10/23/2017		