

PRODUCT SPECIFICATION

Part Number PL16K-WCW32

Details

- 5mm (T1 ³/₄) Round Thru-Hole LED Lamp
- Emitting Color: White
- Water Clear Lens
- InGaN dice used

Features

- Low power consumption
- RoHS Compliant
- Rugged and Durable
- High Efficiency

0.5 SQUARE X 2

Notes:

- 1. All dimensions are in mm.
- 2. The specifications, characteristics and technical data described in this datasheet are subject to change without notice.
- 3. Tolerance is ± 0.25 mm unless otherwise noted.

2.54±0.1

Device Selection Guide

Model Number	Cl	Lens Type	
	Material	Emitting Color	Water Clear
PL16K-WCW32	InGaN	White	water Clear

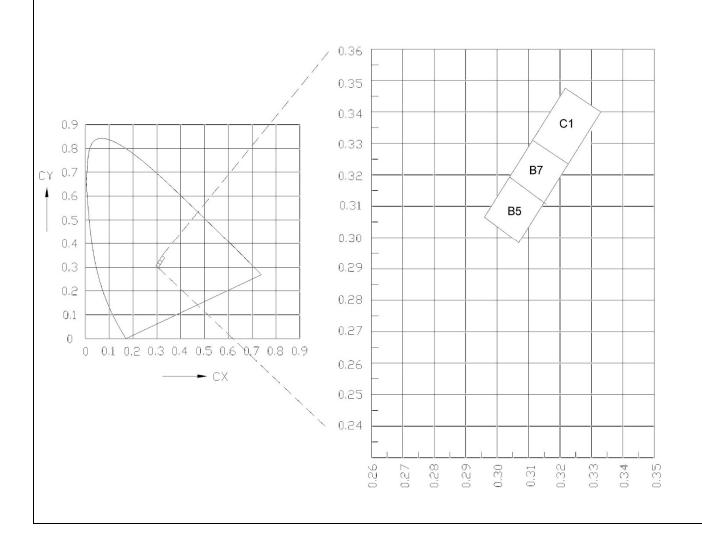
Absolute Maximum Ratings at Ta=25 °C

Parameter	Symbol	Rating	Unit
Power Dissipation	PD	120	mW
Reverse Voltage	VR	5	V
DC Forward Current	IF	30	mA
Reverse (Leakage) Current	Ir	50	μΑ
Peak Current (duty cycle 1/10, 1KHz)	IPF	100	mA
Operating Temperature	Topr	-25~+85	°C
Storage Temperature	Tstg	-40~+100	°C
Soldering Temperature (1.6mm from body)	Tsol.	Dip Soldering : 260°C for 5 sec. Hand Soldering : 350°C for 3 sec.	
Electrostatic Discharge	ESD	1000	V

Electrical and Optical Characteristics at Ta=25 $^{\circ}$ C

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Forward Voltage Per Segment	VF		3.2	4.0	V	
Luminous Intensity	Iv	5400	11000		mcd	
CIE Chromaticity	X		0.315			IF=20mA
Coordinates: X Axis	Λ		0.313			11 - 20111A
CIE Chromaticity	V		0.325			
Coordinates: Y Axis	1		0.323			
Reverse (Leakage) Current	Ir			50	μΑ	Vr=5V
Viewing Angle	201/2		55			deg

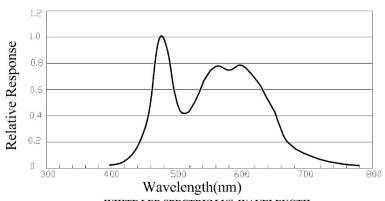
Notes: 1. Tolerance of Luminous Intensity is $\pm 15\%$ 2. Tolerance of Forward Voltage is ± 0.1 V

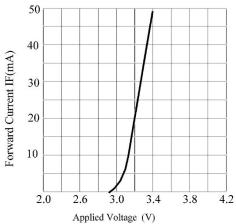

Chromaticity Coordinates Specifications for Bin Grading

• Color Ranks (IF=20mA.Ta=25°C)

BIN			Rank		
B5	X	0.296	0.304	0.315	0.307
	Y	0.307	0.319	0.311	0.298
В7	X	0.304	0.312	0.323	0.315
	Y	0.319	0.331	0.323	0.311
C1	X	0.312	0.322	0.333	0.323
	Y	0.331	0.348	0.34	0.323

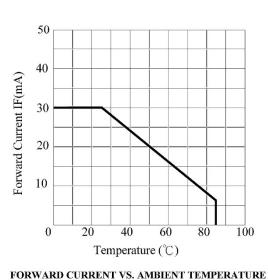
Note: X.Y Tolerance each Bin limit is±0.01.

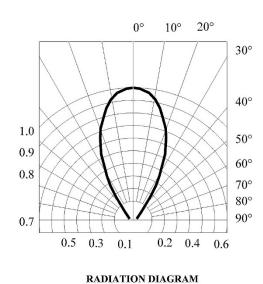

Chromaticity Coordinates & Bin Grading Diagram



Typical Electrical / Optical Characteristic Curves

• (Ta = 25°C Unless Otherwise Noted)


WHITE LED SPECTRUM VS. WAVELENGTH



15000 12000 12000 9000 6000 6000 10.0 20.0 30.0 Forward Current (mA)

FORWARD CURRENT VS. LUMINOUS INTENSITY

FORWARD CURRENT VS.APPLIED VOLTAGE

www.p-tec.net 111413 Rev0 MS Page 4 of 6

Precautions for Use

1. Temperature in use

Since the light generated inside the LED needs to be emitted to outside efficiently, a resin with high light transparency is used; therefore, additives to improve the heat resistance or moisture resistance (silica gel, etc) which are used for semiconductor products such as transistors cannot be added to the resin.

Consequently, the heat resistant ability of the resin used for LED is usually low; therefore, please be careful on the following during use.

Avoid applying external force, stress, and excessive vibration to the resins and terminals at high temperature. The glass transition temperature of epoxy resin used for the LED is approximately $120-130^{\circ}$ C.

At a temperature exceeding this limit, the coefficient of liner expansion of the resin doubles or more compared to that at normal temperature and the resin is softened.

If external force or stress is applied at that time, it may cause a wire rupture.

2. Soldering

Please be careful on the following at soldering.

After soldering, avoided applying external force, stress, and excessive vibration until the products go to cooling process (normal temperature), <Same for products with terminal leads>

(1) Soldering measurements:

Distance between melted solder side to bottom of resin shall be 1.6mm or longer.

(2) Dip soldering:

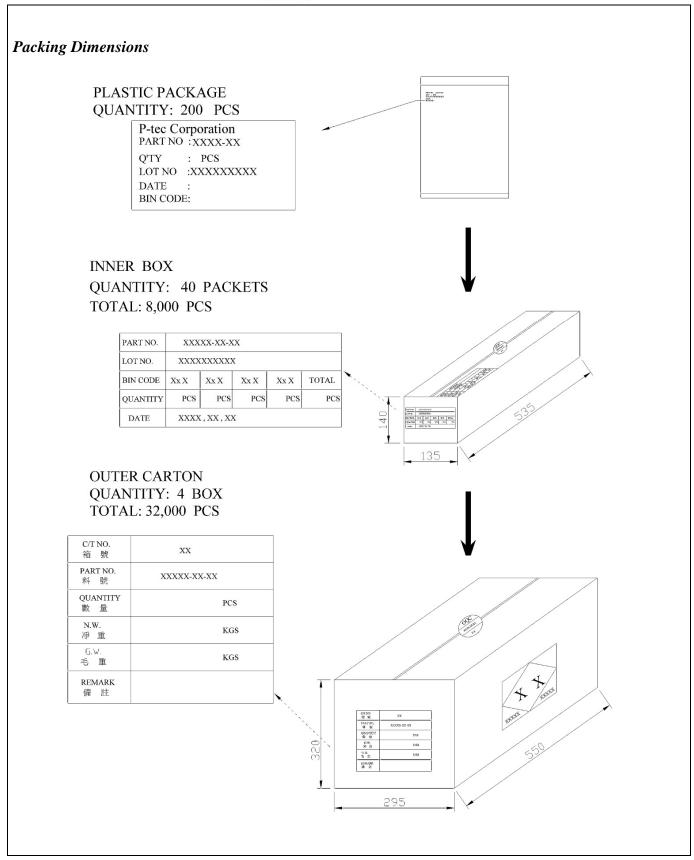
Pre-heat: 90°C max. (Backside of PCB), Within 60 seconds.

Solder bath: 260 \pm 5°C (Solder temperature), Within 5 seconds.

(3) Hand soldering: 350°C max. (Temperature of soldering iron tip), Within 3 seconds.

3. Insertion

Pitch of the LED leads and pitch of mounting holes need to be same.


4. Others

Since the heat resistant ability of the LED resin is low, SMD components are used on the same PCB, please mount the LED after adhesive baking process for SMD components. In case adhesive baking is done after LED lamp insertion due to a production process reason, make sure not to apply external force, stress, and excessive vibration to the LED and follow the conditions below.

Baking temperature: 120°C max. Baking time: Within 60 seconds.

If soldering is done sequentially after the adhesive baking, please perform the soldering after cooling down the LED to normal temperature.

