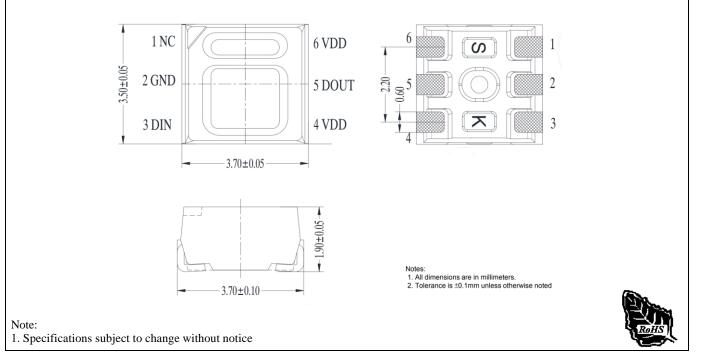


PRODUCT SPECIFICATION

Part Number PLH3537SA6-WCRGBW1x

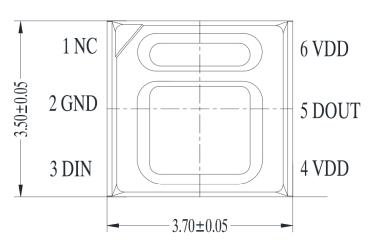
Details

• 3.5 x 3.7 x 1.9mm RGBW LED with integrated IC.

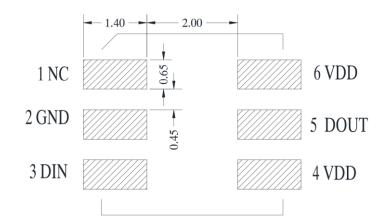

Applications

- Full color LED string light
- LED full color module
- LED guardrail tube
- LED scene lighting
- LED point light
- LED pixel screen
- LED shaped screen

Features


- 3537 with integrated high quality constant current IC and RGBW LED chips.
- Built-in IC, with high precision of constant current and internal RGBW chips spectral processing in advance.
- Single line data transmission (return to zero code).
- Specific Shaping Transmit Technology number of LED stacked is not restricted.
- Cascading Enhancement Technology any 2 LED spacing can be up to 10 meters
- Data transfer rate of 800 kbp/s at 30 frames per second.
- RGBW output port PWM control can achieve 256 grey level adjustments.
- Upon powering up, IC performs self-inspection then lights connection on the pin B lamp.
- SA-I Anti-interference patent technology for single line data transmission.
- Built-in power supply reverse connect protection module, reversed power input will not damage the IC.

Package Outline Dimensions & Pin Configuration



Pin Configuration

Number	Symbol	Function Description
1	NC	NC
2	GND	The signal and power supply and grounding
3	DIN	Control signal data input
4/6	VDD	Power supply pin
5	DOUT	Control signal data output

Soldering Pad Size

Notes:

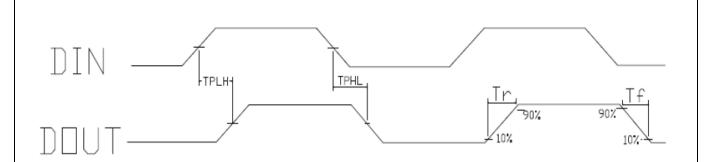
1. Dimension in millimeter, tolerance is $\pm 0.1 \text{mm}$ unless otherwise noted.

Absolute Maximum Rating (Ta = 25 °C, VSS=0V)

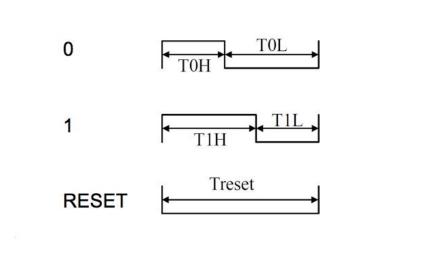
Parameter	Symbol	Range	Unit
Power supply voltage	Vdd	+3.7~+5.5	V
Logic input voltage	VIN	-0.5 ~VDD+0.5	V
Working temperature	Торт	$-40 \sim +80$	°C
Storage temperature	Tstg	$-40 \sim +80$	°C
ESD pressure(HBM)	Vesd	4K	V
ESD pressure(DM)	Vesd	200	V

LED Characteristics ($Ta = 25^{\circ}C$)

Color	12mA				
Color	Wavelength(nm)	Light Intensity(mcd)			
Red	620-630	300-500			
Green	515-530	1000-1500			
Blue	460-470	200-400			
Cool White	6000K	1500-2200			
Neutral White	4000k	1500-2200			
Warm White	3000k	1500-2200			


Recommended Operating Ranges (unless otherwise specified, Ta=-20 ~ +70 °C, VDD=4.5 ~ 5.5V,VSS=0V)

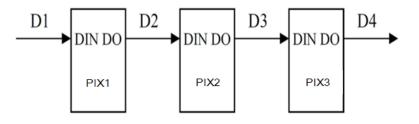
Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
The chip Supply Voltage	V_{DD}	-	5.2	-	V	-
The signal input flip threshold	V _{IH}	0.7*+VDD	-		V	VDD=5.0V
The signal input flip threshold	V _{IL}	-	-	0.3*+VDD	V	VDD=5.0V
The frequency of PWM	F _{PWM}	-	1.2	-	KHZ	-
Static power consumption	I _{DD}	-	1	-	mA	-

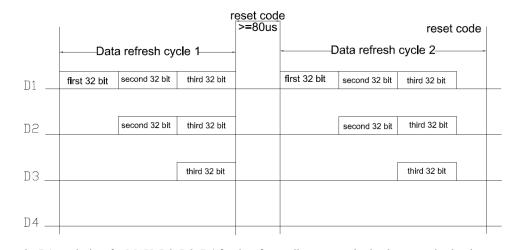

Switching Characteristics (unless otherwise specified, TA=25 °C)

Ratco gygt''	U{odqn'	O kp0'	V{r0'	Ocz"	Wpla''	Vguv'èqpf isi qpu''
Vjg"urggf"qh'fcvc"vtcpuokuukqp"	hFKP"	/"	: 22"	/"	$M\!J\setminus "$	Vj g'f w{ 'tcvkq'qh'89' " *f cvc''3+"
FOW/"ttenue kulen"fom("	V _{RNJ} "	/"	/"	722"	pu"	FKP FQWV″
FQWV'\tcpuokuukqp'fgrc{"	V_{RJN}''	/"	/"	722"	pu"	FRE FQWV
K. "Theπter™Ja e"	V_t "	/"	322"	/"	pu"	XFU?307"
K _{ww} 'TkuglFtqr 'Vkog''	$V_h^{\prime\prime}$	/"	322"	/"	pu"	KQWV"T II ID"?"; o C" KQWV"Y "?"3: o C"

Timing Waveforms

1. Input Code

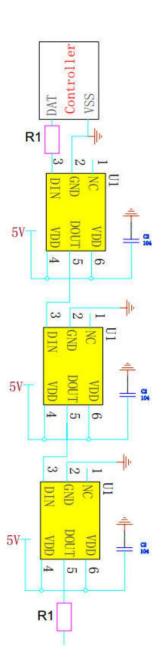



2. The data transmission time (TH+TL= $1.25 \mu s \pm 600 ns$):

	Name	Min.	Standard value	Max.	Unit
Т	Code period	1.20			μs
тон	0 code, high level time	0.2	0.32	0.4	μs
TOL	0 code, low level time	0.8			μs
T1H	1 code, high level time	0.58	0.64	1.0	μs
T1L	1 code, low level time	0.2	($\overline{\sqrt{\pi}}$	μs
Trst	Reset code, low level time	>80		<u> </u>	μs

3. Connection Scheme

4. Data Transfer Format


Note: the D1 sends data for MCU, D2, D3, D4 for data forwarding automatic shaping cascade circuit.

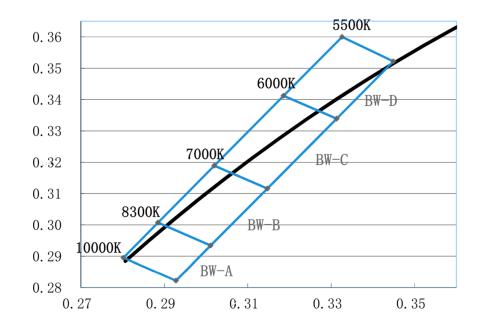
5. 24-bit data format

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4
R3	R2	R1	RO	B7	B6	B5	B4	B3	B2	B1	BO
W7	W6	W5	W4	W3	W2	W1	wo				

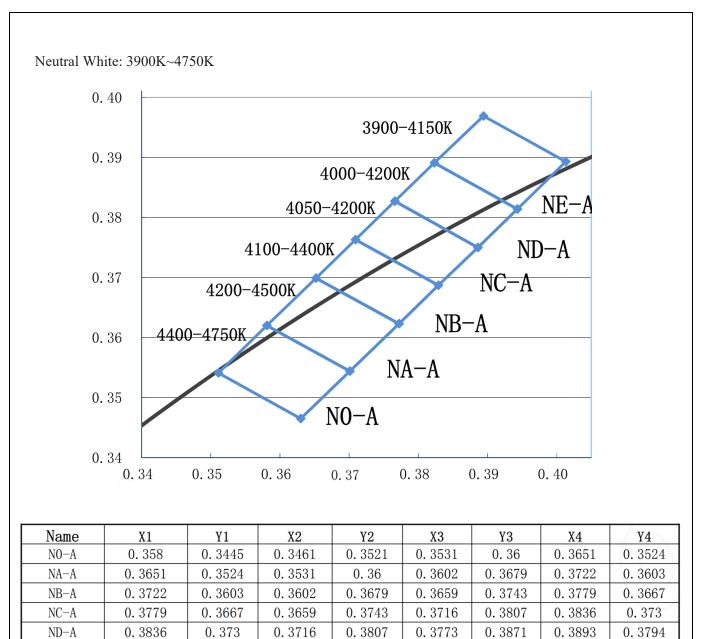
Typical Application Circuit

In the practical application circuit, the signal input and output pins of the IC signal input and output pins should be connected to the signal input and output terminals. In addition, to make the IC chip is more stable, even the capacitance between beads is essential back.

Application: used for soft lamp strip or hard light, lamp beads transmission distance is short, suggested in signal in time the clock line input and output end of each connected in series protection resistors, R1 of about 500 ohms.


Application: for module or general special-shaped products, lamp beads transmission distance is long, because of different wire and transmission distance, in the signal in time clock at both ends of the line on grounding protection resistance will be slightly different; to the actual use of fixed.

Color Bin Specification


Name	Code	λd MIN (nm)	λd MAX (nm)
Del	R1	620	625
Red	R2	625	630
Dlue	B5	460	465
Blue	B6	465	470
	G2	515	520
Green	G3	520	525
	G4	525	530

Cool White: 7000K~10000K

Name BW-A	X1 0. 2928	¥1 0. 2822	X2 0. 2802	¥2 0. 2895	X3 0. 2885	¥3 0. 3007	X4 0. 3011	¥4 0. 2934
BW-B	0. 3011	0. 2934	0. 2885	0. 3007	0. 302	0. 3189	0. 3147	0. 3116
В₩−С	0. 3147	0. 3116	0.302	0. 3189	0. 3186	0. 3412	0. 3313	0. 3339
BW-D	0. 3313	0. 3339	0. 3186	0. 3412	0. 3326	0.36	0. 3449	0. 3522

NE-A

0.3893

0.3871

0.3844

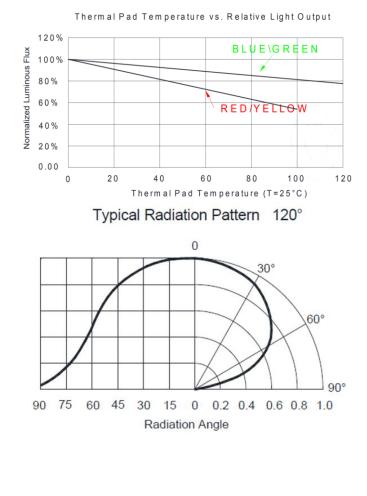
0.3949

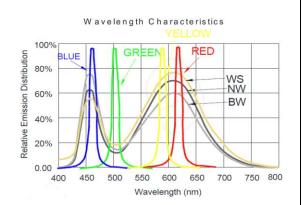
0.3963

0.3773

0.3794

0.3873




Warm White: 2700K~3200K 0.44 2700K 2800K 3000K 0.43 3200K .2-A 0.42 K3-A K2-A 0.41 L1-A K4-A 0.40 K1-A 0.39 0.38 0.41 0.42 0.43 0.44 0.46 0.47 0.45

Name	X1	Y1	X2	Y2	ХЗ	¥3	X4	¥4
K1-A	0.4344	0.4032	0.4221	0.3984	0.4147	0.3814	0.426	0.3853
K2-A	0.443	0. 4212	0.4299	0.4165	0. 4221	0.3984	0. 4344	0.4032
КЗ-А	0.4562	0.426	0.443	0.4212	0. 4344	0. 4032	0.4465	0.4071
K4-A	0.4465	0.4071	0.4344	0.4032	0.426	0.3853	0. 4373	0.3893
L1-A	0.4586	0.4103	0.4465	0.4071	0. 4373	0.3893	0. 4483	0.3918
L2-A	0.4687	0. 4289	0.4562	0. 426	0.4465	0.4071	0.4586	0.4103

LED Performance Graph

Ordering Information

Product	Emission Color	Iv (mcd) Typ.	Wavelength (Wd) / CCT Typ.	Orderable Part Number
	R	400	625	
PLH3537SA6-WCRGBW16	G	1250	520	PLH3537SA64-WCRGB16
PLH333/SA0-WCRGBW10	В	300	465	PLH353/SA04-wCKGB10
	W	1850	6000k	
	R	400	625	
PLH3537SA6-WCRGBW14	G	1250	520	PLH3537SA64-WCRGB14
PLH353/SA0-WCROBW14	В	300	465	PLH353/SA64-wCRGB14
	W	1850	4000k	
	R	400	625	
PLH3537SA6-WCRGBW13	G	1250	520	PLH3537SA64-WCRGB13
rLn335/SA0-WCKGBW15	В	300	465	rLn555/SA04-WCRGB15
	W	1850	3000k	

Precautions

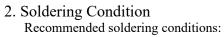
Please read the following notes before using the product:

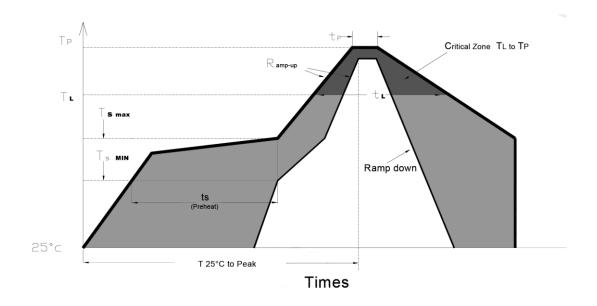
1. Storage

1.1 Do not open moisture proof bag before the products are ready to use.

1.2 Before opening the package, the LEDs should be kept at 30°C or less and 80%RH or less.

1.3 The LEDs should be used within a year.


1.4 After opening the package, the remaining LEDs should be kept in a resealed bag.

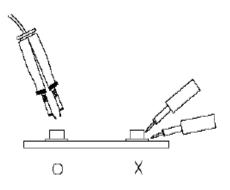

1.5 The LEDs require mandatory baking before usage. Baking treatment listed below.

1.6 If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

*Baking treatment: 60±5°C for24 hours.

Profile Feature	Lead-Free Solder
Average Ramp-Up Rate (Ts _{max} to Tp)	3°C/second max.
Preheat: Temperature Min (Ts _{min})	150°C
Preheat: Temperature Min (Ts _{max})	200 °C
Preheat: Time (ts min to ts max)	60-180 seconds
Time Maintained Above: Temperature (T _L)	217 °C
Time Maintained Above: Time (t _L)	60-150 seconds
Peak/Classification Temperature (T _P)	240 °C
Time Within 5°C of Actual Peak Temperature (tp)	<10 seconds
Ramp-Down Rate	6°C/second max.
Time 25 °C to Peak Temperature	<6 minutes max.

Note: Excessive soldering temperature and / or time might result in deformation of the LED lens or catastrophic failure of the LED.



3. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260°C for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

4. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

5. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wristband or antielectrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.Re: da

Record of Revisions			
Rev.	Comments	Page	Date
0	Released Spec		4/27/202