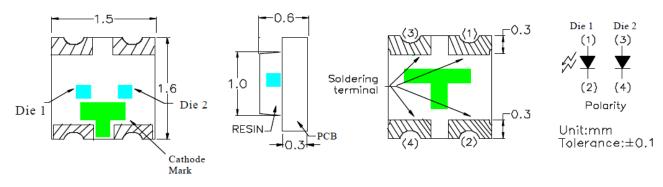


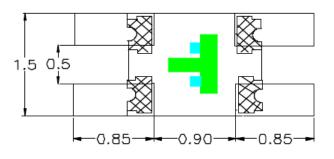
PRODUCT SPECIFICATION

Part Number PL00134-WCRY1806


Details

- Bi-Color Ultra-Bright Surface Mount LED
- 1.6 mm x 1.5mm x 0.6 mm, 0605 package
- Emitting color: Red and Yellow
- AlInGaP chip material
- 4,000 Piece Reels

Mechanical Dimensions


Features

- RoHS Compliant
- Compatible with automatic placement equipment
- High Luminous Intensity
- Compatible with reflow solder process

1. Soldering terminal may shift in x, y direction.

Recommended Soldering Pad Dimensions

1. Dimensions in millimeters unless otherwise noted

2. Specifications subject to change without notice

Device Selection Guide

Model Number		Chip	Lens Type
Widdel Number	Material	Emitting Color	
PL00134-WCRY1806	AlInGaP	Ultra-Bright Red	Water Clear
FL00134-WCK11800	AlInGaP	Ultra-Bright Yellow	

Absolute Maximum Ratings at $Ta=25 \ \mathcal{C}$

Parameter	Symbol	Maximum	Unit
Peak Forward Current (duty cycle 1/10, 0.1ms Pulse Width)	IFP	100	mA
Derating Liner from 25°C		0.4	mA/°C
Reverse Voltage	VR	5	V
Operating Temperature	Topr	-40~+85	°C
Storage Temperature	Tstg	-40~+85	°C

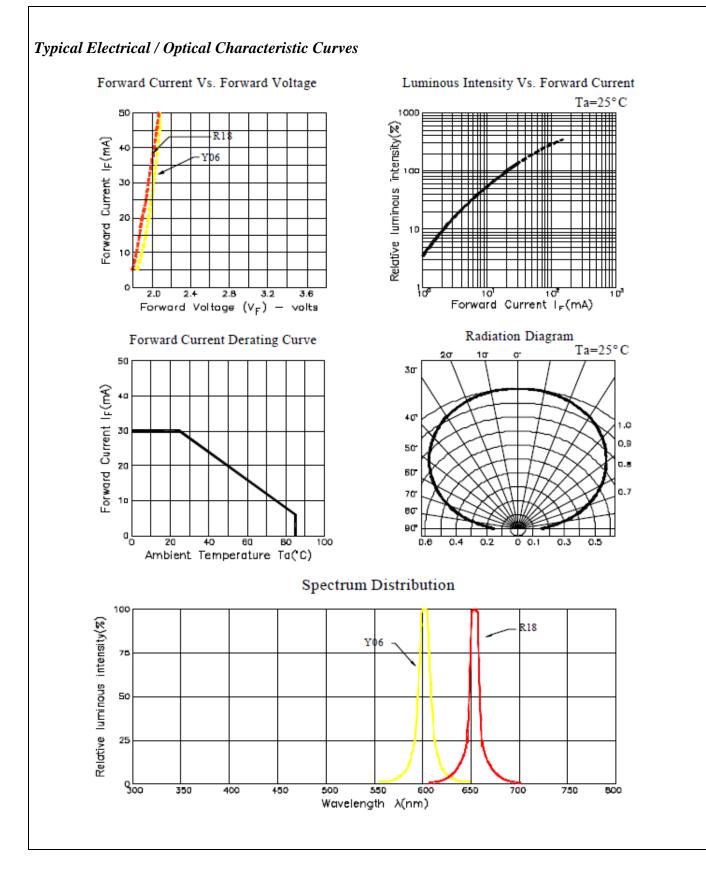
Electrical and Optical Characteristics at Ta=25 °C

Chip			Absolut	e Max. R	atings	ngs Electro-optical (@ 20mA)			ata	Viewing Angle 201/2 (deg)
Emitting Color	λP (nm)	λD (nm)	Δλ (nm)	PD (mW)	IFmax (mA)	VF	(V)	IV ((mcd)	
Ultra-Bright Red	645	631	20	78	30	Typ. 2.1	Max. 2.6	Min. 72	Тур. 115	120°
Ultra-Bright Yellow	592	590	15	78	30	2.1	2.6	45	72	

Notes: Tolerance Luminous intensity $\pm 15\%$ and Wavelength (λ D) $\pm 2nm$

Luminous Intensity Bins

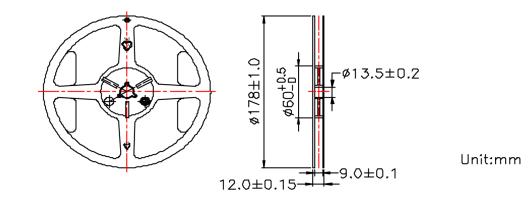
	Test Condition: @20mA	
Bin Code R18 (Red)	Min. IV (mcd)	Max. Iv (mcd)
J	45	72
K	72	115
L	115	180


	Test Condition: @20mA	
Bin Code Y06 (Yellow)	Min. IV (mcd)	Max. Iv (mcd)
J	45	72
K	72	115

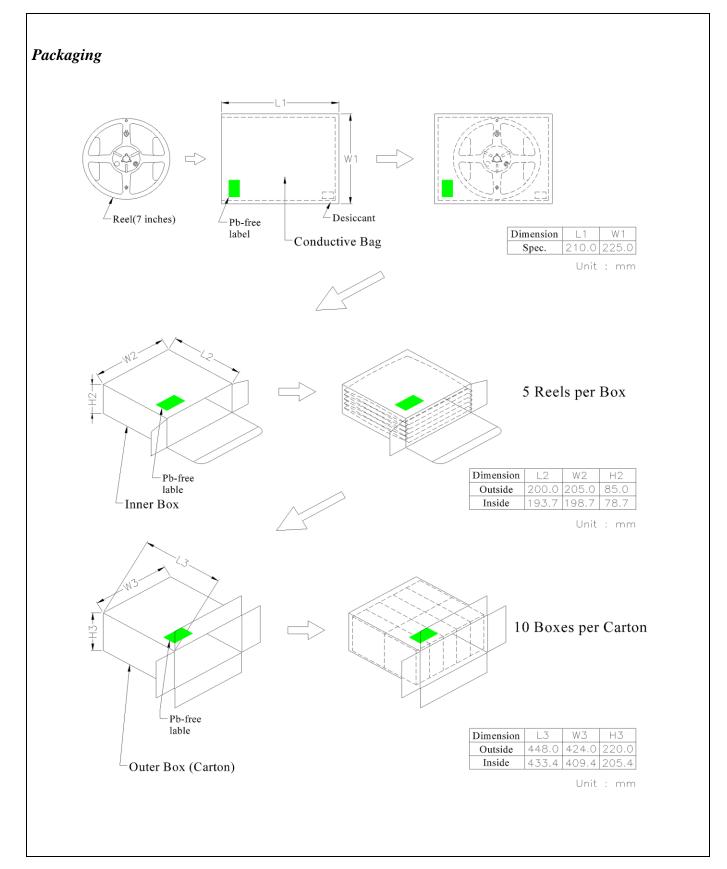
Dominant Wavelength Bins

	Test Condition: @20mA	
Bin Code	Dmin (nm)	Dmax (nm)
R18 (Red)	- λDmin (nm)	λDmax (nm)
1	624	640

	Test Condition: @20mA	
Bin Code	λDmin (nm)	λDmax (nm)
Y06 (Yellow)	xDiiiii (iiii)	ADINAX (IIII)
2	585	588
3	588	591
4	591	594

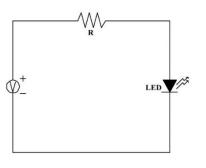


Tape Specifications


					Pa	acking	Size						
Item	W	P1	E	F	Do	D1	Po	10P0	P2	Ao	Во	Ko	t
Spec.	8.00	4.00	1.75	3.50	1.50	1.00	4.00	40.00	2.00	1.65	1,75	0.70	0.229
Tolerance	±0.3	±0.10	±0.10	±0.05	+0.10	+0.25	±0.05	±0.20	±0.05	±0.05	±0.05	±0.05	±0.02

Reel Specifications

Precautions for Use


- The Chip-LED Taping is much smaller than lead frame type components, thus enable smaller board size, higher packing density, reduced storage space and finally smaller equipment to be obtained.
- Besides, lightweight makes them ideal for miniature application, etc.

No.	Item	Test Con	ditions	Test hr/cycle/time	Sample Q'ty	Ac / Re
1	Solder Heat	TEMP:260°C±	$5^{\circ}C$; 10±1 sec	2 times	30 pcs	0/1
2	Solderbility Test 💥	TEMP : 235°C±	$=5^{\circ}C$; 3 ± 1 sec	1 time	5 pcs	0/1
3	Temperature Cycle	H : +85℃ ∫ 5n L : -40℃	nin.	100 cycles	20 pcs	0 / 1
4	Thermal Shock	H : +85°(∫ L : -40°(50 cycles	20 pcs	0 / 1
5	High Temperature Storage	TEMP	85°C	1000 hrs	20 pcs	0/1
6	Low Temperature Storage	TEMP :	-40°C	1000 hrs	20 pcs	0/1
7	DC Operating Life	$I_F = I$	Fmax	1000 hrs	20 pcs	0 / 1
8	High Temperature High Humidity	85°C / 90∼	·95%R.H.	1000 hrs	20 pcs	0 / 1
9	Shocking test	100~2000Hz X,Y,Z di		2 hrs	20 pcs	0 / 1
10	Dropping test	Put on pallet ;	height : 75cm	3 times	20 pcs	0/1
		Judgmen	t Criteria			
	Forward Voltage V _F		VI			
	Reverse Current I _R		I _R			
	Luminous Intensity I	15		$I_V \text{Decay} < 40\%$	0	
× So	lderbility test criteria : covera	ge is not less that	n 95%			

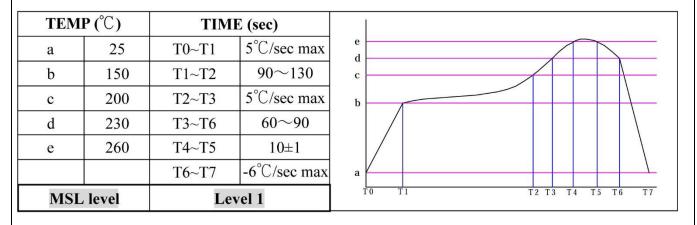
X Solderbility test criteria : coverage is not less than 95%

Note : Measurement shall be taken after the tested samples have been returned to normal ambient conditions (generally after two hours)

Test Circuit

• Overdrive current proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause current change with great deal. (Burn out will happen)


• Storage

1. The operation of temperature and R.H. are $: 5^{\circ}C \sim 30^{\circ}C, 60^{\circ}R.H.$ Max.

2. Once the package is opened, the products should be used within a week. Otherwise, they should be kept in a damp-proof box with desiccant. Considering the tape life, we suggest our customers use our products within 1.5 years (from production date).

3. It is recommended to bake before soldering when the package is unsealed more than 72 hrs. The condition is: $60^{\circ}C \pm 5^{\circ}C$ for 15 hrs.

Reflow Temperature/Time

Hand Soldering Iron

Temperature at tip of iron: 400°C Max (35W Max) Soldering time: 3 +/-1 sec.

	Approved By	Checked By	Prepared By
PL00134-WCRY1806 Customer Approval Signatures			

Record Of Revisions							
Rev.	Comments	Page	Date				
0	Released Spec		03/14/16				